Julia es un lenguaje de programación de código abierto, multiplataforma, de alto nivel y alto rendimiento para cálculo técnico.
Julia posee un compilador JIT La compilación Just-In-Time se produce en tiempo de ejecución en vez de antes de la ejecución, y ofrece la velocidad del código compilado y la flexibilidad de la interpretación. El compilador analiza el código e infiere los tipos, después de lo cual se genera el código LLVM, que a su vez se compila a código nativo. basado en una LLVM Low-Level Virtual Machine (LLVM, Máquina Virtual de Bajo Nivel), es una infraestructura de compilador para compilar código máquina binario y/o código intermedio. que permite alcanzar el rendimiento de lenguajes como C y FORTRAN sin las inconveniencias del código de bajo nivel. Debido a que el código se compila al vuelo se puede(n) ejecutar (partes de) código en una consola o REPL Read-Eval-Print-Loop (Bucle de Lectura-Evaluación-Impresión), que es parte del flujo de trabajo recomendado.
Julia utiliza tipado dinámico, proporciona despacho múltiple Por ser determinados los tipos de los argumentos de las funciones en tiempo de ejecución, el compilador consigue escojer la implementación que está optimizada para los argumentos proporcionados y la arquitectura de procesador. , y está diseñado para cálculo distribuido y paralelo.
Julia incorpora un gestor de paquetes.
Julia incorpora varias funciones matemáticas, incluidas funciones especiales (p.ej. Gamma), y soporta números complejos recién instalado.
Julia le permite generar código “automágicamente” gracias a macros inspiradas en Lisp.
Julia data de 2012.
Assignment | answer = 42 x, y, z = 1, [1:10; ], "A string" x, y = y, x # swap x and y |
Constant declaration | const DATE_OF_BIRTH = 2012 |
End-of-line comment | i = 1 # This is a comment |
Delimited comment | #= This is another comment =# |
Chaining | x = y = z = 1 # right-to-left 0 < x < 3 # true 5 < x != y < 5 # false |
Function definition | function add_one(i) return i + 1 end |
Insert LaTeX symbols | \delta + [Tab] |
Basic arithmetic | + , - ,* ,/ |
Exponentiation | 2^3 == 8 |
Division | 3/12 == 0.25 |
Inverse division | 7\3 == 3/7 |
Remainder | x % y or rem(x,y) |
Negation | !true == false |
Equality | a == b |
Inequality | a != b or a ≠ b |
Less and larger than | < and > |
Less than or equal to | <= or ≤ |
Greater than or equal to | >= or ≥ |
Element-wise operation | [1, 2, 3] .+ [1, 2, 3] == [2, 4, 6] [1, 2, 3] .* [1, 2, 3] == [1, 4, 9] |
Not a number | isnan(NaN) not(!) NaN == NaN |
Ternary operator | a == b ? "Equal" : "Not equal" |
Short-circuited AND and OR | a && b and a || b |
Object equivalence | a === b |
Recall last result | ans |
Interrupt execution | [Ctrl] + [C] |
Clear screen | [Ctrl] + [L] |
Run program | include("filename.jl") |
Get help for func is defined |
?func |
See all places where func is defined |
apropos("func") |
Command line mode | ; |
Package Manager mode | ] |
Help mode | ? |
Exit special mode / Return to REPL | [Backspace] on empty line |
Exit REPL | exit() or [Ctrl] + [D] |
To help Julia load faster, many core functionalities exist in standard libraries that
come bundled with Julia. To make their functions available, use using PackageName
. Here
are some Standard Libraries and popular functions.
Random |
rand , randn , randsubseq |
Statistics |
mean , std , cor , median , quantile |
LinearAlgebra |
I , eigvals , eigvecs , det , cholesky |
SparseArrays |
sparse , SparseVector , SparseMatrixCSC |
Distributed |
@distributed , pmap , addprocs |
Dates |
DateTime , Date |
Packages must be registered before they are visible to the
package manager. In Julia 1.0, there are two ways to work with the package manager:
either with using Pkg
and using Pkg
functions, or by typing ]
in the REPL to
enter the special interactive package management mode. (To return to regular REPL, just
hit BACKSPACE
on an empty line in package management mode). Note
that new tools arrive in interactive mode first, then usually also
become available in regular Julia sessions through Pkg
module.
Pkg
in Julia sessionList installed packages (human-readable) | Pkg.status() |
Update all packages | Pkg.update() |
Install PackageName |
Pkg.add("PackageName") |
Rebuild PackageName |
Pkg.build("PackageName") |
Use PackageName (after install) |
using PackageName |
Remove PackageName |
Pkg.rm("PackageName") |
Add PackageName |
add PackageName |
Remove PackageName |
rm PackageName |
Update PackageName |
update PackageName |
Use development version | dev PackageName or dev GitRepoUrl |
Stop using development version, revert to public release | free PackageName |
Character | chr = 'C' |
String | str = "A string" |
Character code | Int('J') == 74 |
Character from code | Char(74) == 'J' |
Any UTF character | chr = '\uXXXX' # 4-digit HEX chr = '\UXXXXXXXX' # 8-digit HEX |
Loop through characters | for c in str println(c) end |
Concatenation | str = "Learn" * " " * "Julia" |
String interpolation | a = b = 2 println("a * b = $(a*b)") |
First matching character or regular expression | findfirst(isequal('i'), "Julia") == 4 |
Replace substring or regular expression | replace("Julia", "a" => "us") == "Julius" |
Last index (of collection) | lastindex("Hello") == 5 |
Number of characters | length("Hello") == 5 |
Regular expression | pattern = r"l[aeiou]" |
Subexpressions | str = "+1 234 567 890" pat = r"\+([0-9]) ([0-9]+)" m = match(pat, str) m.captures == ["1", "234"] |
All occurrences | [m.match for m = eachmatch(pat, str)] |
All occurrences (as iterator) | eachmatch(pat, str) |
Beware of multi-byte Unicode encodings in UTF-8:
10 == lastindex("Ångström") != length("Ångström") == 8
Strings are immutable.
Integer types | IntN and UIntN , with N ∈ {8, 16, 32, 64, 128} , BigInt |
Floating-point types | FloatN with N ∈ {16, 32, 64} BigFloat |
Minimum and maximum values by type | typemin(Int8) typemax(Int64) |
Complex types | Complex{T} |
Imaginary unit | im |
Machine precision | eps() # same as eps(Float64) |
Rounding | round() # floating-point round(Int, x) # integer |
Type conversions | convert(TypeName, val) # attempt/error typename(val) # calls convert |
Global constants | pi # 3.1415... π # 3.1415... im # real(im * im) == -1 |
More constants | using Base.MathConstants |
Julia does not automatically check for numerical overflow. Use package SaferIntegers for ints with overflow checking.
Many random number functions require using Random
.
Set seed | seed!(seed) |
Random numbers | rand() # uniform [0,1) randn() # normal (-Inf, Inf) |
Random from Other Distribution | using Distributions my_dist = Bernoulli(0.2) # For example rand(my_dist) |
Random subsample elements from A with inclusion probability p | randsubseq(A, p) |
Random permutation elements of A | shuffle(A) |
Declaration | arr = Float64[] |
Pre-allocation | sizehint!(arr, 10^4) |
Access and assignment | arr = Any[1,2] arr[1] = "Some text" |
Comparison | a = [1:10;] b = a # b points to a a[1] = -99 a == b # true |
Copy elements (not address) | b = copy(a) b = deepcopy(a) |
Select subarray from m to n | arr[m:n] |
n-element array with 0.0s | zeros(n) |
n-element array with 1.0s | ones(n) |
n-element array with #undefs | Vector{Type}(undef,n) |
n equally spaced numbers from start to stop | range(start,stop=stop,length=n) |
Array with n random Int8 elements | rand(Int8, n) |
Fill array with val | fill!(arr, val) |
Pop last element | pop!(arr) |
Pop first element | popfirst!(a) |
Push val as last element | push!(arr, val) |
Push val as first element | pushfirst!(arr, val) |
Remove element at index idx | deleteat!(arr, idx) |
Sort | sort!(arr) |
Append a with b | append!(a,b) |
Check whether val is element | in(val, arr) or val in arr |
Scalar product | dot(a, b) == sum(a .* b) |
Change dimensions (if possible) | reshape(1:6, 3, 2)' == [1 2 3; 4 5 6] |
To string (with delimiter del between elements) | join(arr, del) |
For most linear algebra tools, use using LinearAlgebra
.
Identity matrix | I # just use variable I. Will automatically conform to dimensions required. |
Define matrix | M = [1 0; 0 1] |
Matrix dimensions | size(M) |
Select i th row |
M[i, :] |
Select i th column |
M[:, i] |
Concatenate horizontally | M = [a b] or M = hcat(a, b) |
Concatenate vertically | M = [a ; b] or M = vcat(a, b) |
Matrix transposition | transpose(M) |
Conjugate matrix transposition | M' or adjoint(M) |
Matrix trace | tr(M) |
Matrix determinant | det(M) |
Matrix rank | rank(M) |
Matrix eigenvalues | eigvals(M) |
Matrix eigenvectors | eigvecs(M) |
Matrix inverse | inv(M) |
Solve M*x == v |
M\v is better Numerically more stable and typically also faster. than inv(M)*v |
Moore-Penrose pseudo-inverse | pinv(M) |
Julia has built-in support for matrix decompositions.
Julia tries to infer whether matrices are of a special type (symmetric,
hermitian, etc.), but sometimes fails. To aid Julia in dispatching the
optimal algorithms, special matrices can be declared to have a structure
with functions like Symmetric
, Hermitian
, UpperTriangular
, LowerTriangular
,
Diagonal
, and more.
Conditional | if-elseif-else-end |
Simple for loop |
for i in 1:10 println(i) end |
Unnested for loop | for i in 1:10, j = 1:5 println(i*j) end |
Enumeration | for (idx, val) in enumerate(arr) println("the $idx-th element is $val") end |
while loop |
while bool_expr # do stuff end |
Exit loop | break |
Exit iteration | continue |
All arguments to functions are passed by reference.
Functions with !
appended change at least one argument, typically the first:
sort!(arr)
.
Required arguments are separated with a comma and use the positional notation.
Optional arguments need a default value in the signature, defined with =
.
Keyword arguments use the named notation and are listed in the function’s signature after the semicolon:
function func(req1, req2; key1=dflt1, key2=dflt2)
# do stuff
end
The semicolon is not required in the call to a function that accepts keyword arguments.
The return
statement is optional but highly recommended.
Multiple data structures can be returned as a tuple in a single return
statement.
Command line arguments julia script.jl arg1 arg2...
can be processed from global
constant ARGS
:
for arg in ARGS
println(arg)
end
Anonymous functions can best be used in collection functions or list comprehensions:
x -> x^2
.
Functions can accept a variable number of arguments:
function func(a...)
println(a)
end
func(1, 2, [3:5]) # tuple: (1, 2, UnitRange{Int64}[3:5])
Functions can be nested:
function outerfunction()
# do some outer stuff
function innerfunction()
# do inner stuff
# can access prior outer definitions
end
# do more outer stuff
end
Functions can have explicit return types
# take any Number subtype and return it as a String
function stringifynumber(num::T)::String where T <: Number
return "$num"
end
Functions can be vectorized by using the Dot Syntax
# here we broadcast the subtraction of each mean value
# by using the dot operator
julia> using Statistics
julia> A = rand(3, 4);
julia> B = A .- mean(A, dims=1)
3×4 Array{Float64,2}:
0.0387438 0.112224 -0.0541478 0.455245
0.000773337 0.250006 0.0140011 -0.289532
-0.0395171 -0.36223 0.0401467 -0.165713
julia> mean(B, dims=1)
1×4 Array{Float64,2}:
-7.40149e-17 7.40149e-17 1.85037e-17 3.70074e-17
Julia generates specialized versions Multiple dispatch a type of polymorphism that dynamically determines which version of a function to call. In this context, dynamic means that it is resolved at run-time, whereas method overloading is resolved at compile time. Julia manages multiple dispatch completely in the background. Of course, you can provide custom function overloadings with type annotations. of functions based on data types. When a function is called with the same argument types again, Julia can look up the native machine code and skip the compilation process.
Since Julia 0.5 the existence of potential ambiguities is still acceptable, but actually calling an ambiguous method is an immediate error.
Stack overflow is possible when recursive functions nest many levels deep. Trampolining can be used to do tail-call optimization, as Julia does not do that automatically yet. Alternatively, you can rewrite the tail recursion as an iteration.
Dictionary | d = Dict(key1 => val1, key2 => val2, ...) d = Dict(:key1 => val1, :key2 => val2, ...) |
All keys (iterator) | keys(d) |
All values (iterator) | values(d) |
Loop through key-value pairs | for (k,v) in d println("key: $k, value: $v") end |
Check for key :k |
haskey(d, :k) |
Copy keys (or values) to array | arr = collect(keys(d)) arr = [k for (k,v) in d] |
Dictionaries are mutable; when symbols are used as keys, the keys are immutable.
Declaration | s = Set([1, 2, 3, "Some text"]) |
Union s1 ∪ s2 |
union(s1, s2) |
Intersection s1 ∩ s2 |
intersect(s1, s2) |
Difference s1 \\ s2 |
setdiff(s1, s2) |
Difference s1 △ s2 |
symdiff(s1, s2) |
Subset s1 ⊆ s2 |
issubset(s1, s2) |
Checking whether an element is contained in a set is done in O(1).
Apply f to all elements of collection coll | map(f, coll) ormap(coll) do elem # do stuff with elem # must contain return end |
Filter coll for true values of f | filter(f, coll) |
List comprehension | arr = [f(elem) for elem in coll] |
Julia has no classes and thus no class-specific methods.
Types are like classes without methods.
Abstract types can be subtyped but not instantiated.
Concrete types cannot be subtyped.
By default, struct
s are immutable.
Immutable types enhance performance and are thread safe, as they can be shared among threads without the need for synchronization.
Objects that may be one of a set of types are called Union
types.
Type annotation | var::TypeName |
Type declaration | struct Programmer name::String birth_year::UInt16 fave_language::AbstractString end |
Mutable type declaration | replace struct with mutable struct |
Type alias | const Nerd = Programmer |
Type constructors | methods(TypeName) |
Type instantiation | me = Programmer("Ian", 1984, "Julia") me = Nerd("Ian", 1984, "Julia") |
Subtype declaration | abstract type Bird end struct Duck <: Bird pond::String end |
Parametric type | struct Point{T <: Real} x::T y::T end p =Point{Float64}(1,2) |
Union types | Union{Int, String} |
Traverse type hierarchy | supertype(TypeName) and subtypes(TypeName) |
Default supertype | Any |
All fields | fieldnames(TypeName) |
All field types | TypeName.types |
When a type is defined with an inner constructor, the default outer
constructors are not available and have to be defined manually if need
be. An inner constructor is best used to check whether the parameters
conform to certain (invariance) conditions. Obviously, these invariants
can be violated by accessing and modifying the fields directly, unless
the type is defined as immutable. The new
keyword may be used to
create an object of the same type.
Type parameters are invariant, which means that Point{Float64} <: Point{Real}
is
false, even though Float64 <: Real
.
Tuple types, on the other hand, are covariant: Tuple{Float64} <: Tuple{Real}
.
The type-inferred form of Julia’s internal representation can be found
with code_typed()
. This is useful to identify where Any
rather
than type-specific native code is generated.
Programmers Null | nothing |
Missing Data | missing |
Not a Number in Float | NaN |
Filter missings | collect(skipmissing([1, 2, missing])) == [1,2] |
Replace missings | collect((df[:col], 1)) |
Check if missing | ismissing(x) not x == missing |
Throw SomeExcep | throw(SomeExcep()) |
Rethrow current exception | rethrow() |
Define NewExcep | struct NewExcep <: Exception v::String end Base.showerror(io::IO, e::NewExcep) = print(io, "A problem with $(e.v)!") throw(NewExcep("x")) |
Throw error with msg text | error(msg) |
Handler | try # do something potentially iffy catch ex if isa(ex, SomeExcep) # handle SomeExcep elseif isa(ex, AnotherExcep) # handle AnotherExcep else # handle all others end finally # do this in any case end |
Modules are separate global variable workspaces that group together similar functionality.
Definition | module PackageName # add module definitions # use export to make definitions accessible end |
Include filename.jl |
include("filename.jl") |
Load | using ModuleName # all exported names using ModuleName: x, y # only x, y using ModuleName.x, ModuleName.y: # only x, y import ModuleName # only ModuleName import ModuleName: x, y # only x, y import ModuleName.x, ModuleName.y # only x, y |
Exports | # Get an array of names exported by Module names(ModuleName) # include non-exports, deprecateds # and compiler-generated names names(ModuleName, all::Bool) #also show namesexplicitely imported from other modules names(ModuleName, all::Bool, imported::Bool) |
There is only one difference between using
and import
: with using
you need to say
function Foo.bar(..
to extend module Foo
’s function bar
with a new method, but
with import Foo.bar
, you only need to say function bar(...
and it automatically
extends module Foo
’s function bar
.
Julia is homoiconic: programs are represented as data structures of the
language itself. In fact, everything is an expression Expr
.
Symbols are interned strings Only one copy of each distinct (immutable) string value is stored. prefixed with a colon. Symbols are more efficient and they are typically used as identifiers, keys (in dictionaries), or columns in data frames. Symbols cannot be concatenated.
Quoting :( ... )
or quote ... end
creates an expression, just
like parse(str)
This form is probably most familiar to
people with knowledge of dynamic SQL. The parse
function is similar
to Oracle”s and PostgreSQL”s EXECUTE IMMEDIATE
statement or SQL
Server’s sp_executesql()
procedure. , and Expr(:call, ...)
.
x = 1
line = "1 + $x" # some code
expr = parse(line) # make an Expr object
typeof(expr) == Expr # true
dump(expr) # generate abstract syntax tree
eval(expr) == 2 # evaluate Expr object: true
Macros allow generated code (i.e. expressions) to be included in a program.
Definition | macro macroname(expr) # do stuff end |
Usage | macroname(ex1, ex2, ...) or @macroname ex1, ex2, ... |
Built-in macros | @test # equal (exact) @test_approx_eq # equal (modulo numerical errors) @test x ≈ y # isapprox(x, y) @assert # assert (unit test) @which # types used @time # time and memory statistics @elapsed # time elapsed @allocated # memory allocated @profile # profile @spawn # run at some worker @spawnat # run at specified worker @async # asynchronous task @distributed # parallel for loop @everywhere # make available to workers |
Rules for creating hygienic macros:
local
.eval
inside macro.$(esc(expr))
Parallel computing tools are available in the Distributed
standard library.
Launch REPL with N workers | julia -p N |
Number of available workers | nprocs() |
Add N workers | addprocs(N) |
See all worker ids | for pid in workers() println(pid) end |
Get id of executing worker | myid() |
Remove worker | rmprocs(pid) |
Run f with arguments args on pid | r = remotecall(f, pid, args...) # or: r = @spawnat pid f(args) ... fetch(r) |
Run f with arguments args on pid (more efficient) | remotecall_fetch(f, pid, args...) |
Run f with arguments args on any worker | r = @spawn f(args) ... fetch(r) |
Run f with arguments args on all workers | r = [@spawnat w f(args) for w in workers()] ... fetch(r) |
Make expr available to all workers | @everywhere expr |
Parallel for loop with reducerA reducer combines the results from different (independent) workers. function red | sum = @distributed (red) for i in 1:10^6 # do parallelstuff end |
Apply f to all elements in collection coll | pmap(f, coll) |
Workers are also known as concurrent/parallel processes.
Modules with parallel processing capabilities are best split into a functions file that contains all the functions and variables needed by all workers, and a driver file that handles the processing of data. The driver file obviously has to import the functions file.
A non-trivial (word count) example of a reducer function is provided by Adam DeConinck.
Read stream | stream = stdin for line in eachline(stream) # do stuff end |
Read file | open(filename) do file for line in eachline(file) # do stuff end end |
Read CSV file | using CSV data = CSV.read(filename) |
Write CSV file | using CSV CSV.write(filename, data) |
Save Julia Object | using JLD save(filename, "object_key", object, ...) |
Load Julia Object | using JLD d = load(filename) # Returns a dict of objects |
Save HDF5 | using HDF5 h5write(filename, "key", object) |
Load HDF5 | using HDF5 h5read(filename, "key") |
For dplyr
-like tools, see
DataFramesMeta.jl.
Read Stata, SPSS, etc. | StatFiles Package |
DescribeSimilar to summary(df) in R. data frame |
describe(df) |
Make vector of column col |
v = df[:col] |
Sort by col |
sort!(df, [:col]) |
CategoricalSimilar to df$col = as.factor(df$col) in R. col |
categorical!(df, [:col]) |
List col levels |
levels(df[:col]) |
All observations with col==val |
df[df[:col] .== val, :] |
Reshape from wide to long format | stack(df, [1:n; ]) stack(df, [:col1, :col2, ...]) melt(df, [:col1, :col2]) |
Reshape from long to wide format | unstack(df, :id, :val) |
Make Nullable |
allowmissing!(df) or allowmissing!(df, :col) |
Loop over Rows | for r in eachrow(df) # do stuff. # r is Struct with fields of col names. end |
Loop over Columns | for c in eachcol(df) # do stuff. # c is tuple with name, then vector end |
Apply func to groups | by(df, :group_col, func) |
Query | using Query query = @from r in df begin @where r.col1 > 40 @select {new_name=r.col1, r.col2} @collect DataFrame # Default: iterator end |
Type | typeof(name) |
Type check | isa(name, TypeName) |
List subtypes | subtypes(TypeName) |
List supertype | supertype(TypeName) |
Function methods | methods(func) |
JIT bytecode | code_llvm(expr) |
Assembly code | code_native(expr) |
Many core packages are managed by communities with names of the form Julia[Topic].
Statistics | JuliaStats |
Automatic differentiation | JuliaDiff |
Numerical optimization | JuliaOpt |
Plotting | JuliaPlots |
Network (Graph) Analysis | JuliaGraphs |
Web | JuliaWeb |
Geo-Spatial | JuliaGeo |
Machine Learning | JuliaML |
Scientific Machine Learning | SciML (formerly DifferentialEquations.jl) |
Super-used Packages | DataFrames # linear/logistic regression Distributions # Statistical distributions Flux # Machine learning Gadfly # ggplot2-likeplotting Graphs # Network analysis TextAnalysis # NLP |
The main convention in Julia is to avoid underscores unless they are required for legibility.
Variable names are in lower (or snake) case: somevariable
.
Constants are in upper case: SOMECONSTANT
.
Functions are in lower (or snake) case: somefunction
.
Macros are in lower (or snake) case: @somemacro
.
Type names are in initial-capital camel case: SomeType
.
Julia files have the jl
extension.
For more information on Julia code style visit the manual: style guide .
sizehint
for large arrays.arr = nothing
.disable_gc()
....
) operator for keyword arguments.!
to avoid copying data structures.try
-catch
in (computation-intensive) loops.Any
in collections.eval
at run-time.